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Alternative Activation of Macrophages Is Accompanied by
Chromatin Remodeling Associated with Lineage-Dependent
DNA Shape Features Flanking PU.1 Motifs

Mei San Tang,*,1 Emily R. Miraldi,†,‡,x Natasha M. Girgis,* Richard A. Bonneau,{,‖ and
P’ng Loke*,‖,#

IL-4 activates macrophages to adopt distinct phenotypes associated with clearance of helminth infections and tissue repair, but the

phenotype depends on the cellular lineage of these macrophages. The molecular basis of chromatin remodeling in response to IL-4

stimulation in tissue-resident and monocyte-derived macrophages is not understood. In this study, we find that IL-4 activation of

different lineages of peritoneal macrophages in mice is accompanied by lineage-specific chromatin remodeling in regions enriched

with binding motifs of the pioneer transcription factor PU.1. PU.1 motif is similarly associated with both tissue-resident and

monocyte-derived IL-4–induced accessible regions but has different lineage-specific DNA shape features and predicted cofactors.

Mutation studies based on natural genetic variation between C57BL/6 and BALB/c mouse strains indicate that accessibility of

these IL-4–induced regions can be regulated through differences in DNA shape without direct disruption of PU.1 motifs. We

propose a model whereby DNA shape features of stimulation-dependent genomic elements contribute to differences in the

accessible chromatin landscape of alternatively activated macrophages on different genetic backgrounds that may contribute

to phenotypic variations in immune responses. The Journal of Immunology, 2020, 205: 1070–1083.

M
acrophage activation is a process by which macro-
phages transition from a resting state to adopt different
phenotypes in response to specific external stimuli

that can either be danger signals or homeostatic and metabolic
signals (1). The macrophage activation process is accompanied
by changes in transcriptional activities and histone modifications
genome-wide, orchestrated by combinatorial actions of different
transcription factors (TFs) that include lineage-determining TFs
(such as PU.1) and stimulus-dependent TFs (such as the STAT
and IRF proteins) (1–6). However, such molecular events have
almost exclusively been described for bone marrow–derived
macrophages (BMDMs) in response to TLR signaling, which
is often used as a reductionist model to mimic type 1 immune

response to acute infections that gives rise to classically acti-
vated macrophages.
In contrast, alternatively activated macrophages (AAMs) in-

duced by type 2 cytokines, such as IL-4 and IL-13, adopt a distinct
phenotype that can promote helminth expulsion and limit tissue
damage during helminth infection (7–10). Notably, different
lineages and phenotypes of tissue macrophages will respond dif-
ferently to IL-4 stimulation in vivo. We have previously demon-
strated that macrophages of tissue-resident and monocytic origins
are phenotypically different following IL-4 stimulation (11, 12).
Hence, a key question is how and why do different types of
macrophages respond differently to the same stimuli? In this
study, we expand on these macrophage-specific differences by
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characterizing changes in accessible chromatin landscape fol-
lowing IL-4 stimulation of these different types of macrophages.
The effects of IL-4 on BMDMs have been documented, partic-
ularly highlighting the reduced response to IFN-g after IL-4
stimulation that is mediated by the action of TFs such as the
PPARg/RXR heterodimer and STAT6 (13–15). However, the
effects of IL-4 on the chromatin of macrophages from different
cellular lineages in vivo have yet to be carefully investigated.
Chromatin accessibility changes have mostly been associated

with the cellular differentiation process, but we find that IL-4
stimulation alone can give rise to new accessible regions in termi-
nally differentiated peritoneal macrophages. These IL-4–induced
regions are dependent on the cellular origin of macrophages and are
enriched with binding motifs of PU.1. Leveraging the genetic
variations between C57BL/6 and BALB/c mice to perform mu-
tational studies in the accessibility regions remodeled in response
to IL-4, we propose and tested a model whereby DNA shape
features in the flanking regions to PU.1 motifs contribute to dif-
ferences in the accessible chromatin landscape of AAMs on dif-
ferent genetic backgrounds. Hence, DNA shape features may be
an unappreciated contributor to the remodeling of chromatin in
response to external stimuli in macrophages.

Materials and Methods
Experimental methods

Mice. Wild-type C57BL/6 mice were purchased from The Jackson Labo-
ratory and bred onsite for the first set of experiments that compared the effect
of IL-4 stimulation on the accessible chromatin profiles from nonstimulated
F4/80hiCD2062 macrophages of embryonic origin (Mres), alternatively
activated F4/80hiCD2062 macrophages of embryonic origin (AAMres),
F4/80intCD206+ macrophages derived from Ly-6Chi inflammatory blood
monocytes (Mmono), and alternatively activated F4/80intCD206+ macro-
phages derived from Ly-6Chi inflammatory blood monocytes (AAMmono).
For experiments directly comparing AAMs of C57BL/6 and BALB/c
backgrounds, mice of both strains were purchased from The Jackson
Laboratory and immediately used for experiments. Mice were age (7–8 wk
of age)– and gender-matched. IL-4/anti–IL-4 mAb complexes (IL-4c) were
prepared as described previously (16). To induce AAMres, mice were in-
jected i.p. with IL-4c on days 0 and 2. Mice were also treated with 4%
thioglycollate alone (to induce Mmono) or in combination with IL-4c to
induce AAMmono (12). All animal procedures were approved by the New
York University (NYU) Institutional Animal Care and Use Committee
under protocol numbers 131004 and 130504.

Peritoneal cell isolation and cell sorting. Peritoneal cells were isolated by
washing the peritoneal cavity twice with cold PBS 1 3. Peritoneal exudate
were then treated with ACK Lysis Buffer to lyse RBCs and washed once
with PBS. Cells were then resuspended to single-cell suspensions for
staining with fluorescently conjugated Abs at 1:100 dilutions, unless oth-
erwise noted. Abs were diluted using 2% FBS. Cells were stained with one
of either LIVE/DEAD Blue (Invitrogen) or LIVE/DEAD Near-IR (Invi-
trogen), blocked with 4 mg/ml anti-CD16/32 (2.4G2; Bio X Cell) and
stained with anti-CD11b Pacific Blue (M1/70; BioLegend), F4/80 PE-Cy7
(BM8; BioLegend), CD206 allophycocyanin (C068C2; BioLegend),
Siglec-F PE (E50-2440; BD Biosciences), CD3 PE (145-2C11; Bio-
Legend), CD19 PE (6D5; BioLegend), CD49b PE (DX5; BioLegend), Ly-
6G (1A8; BioLegend), PD-L2 (PerCP-Cy55; Miltenyi Biotec; diluted at
1:20), and MHC class II (MHCII) (APC-Cy7; BioLegend). Cells were
gated on singlet, live, Dump-negative (CD32, CD192, DX52, Siglec-F2,
Ly-6G2), CD11b+, then subsequently gated on their Mres and AAMres

(F4/80hi, CD2062) or Mmono and AAMmono (F4/80int, CD206+) pheno-
type. Cell surface expression of PD-L2 and MHCII were acquired for
analysis. Cells were sorted using 100-mm nozzle into FBS, on either BD
FACSAria II or SONY HAPS1, depending on instrument availability.

Assay for transposase-accessible chromatin with sequencing Assay for
transposase-accessible chromatin with sequencing (ATAC-seq) was per-
formed as described by Buenrostro et al. (17). Fifty thousand FACS-purified
cells per sample were spun down at 400 g for 5 min at 4˚C and washed
once with 50 ml of cold PBS. Cells were lysed with 50 ml of lysis buffer
(10 mM Tris-HCl [pH7.4], 10 mM NaCl, 3 mMMgCl2, and 0.1% IGEPAL
CA-630) and immediately spun down at 1500 rpm for 10 min at 4˚C. The
isolated cell nuclei were then incubated for 30 min at 37˚C with 50 ml of

transposase reaction, which contained 25 ml of Tagment DNA buffer
(Illumina), 2.5 ml of Tagment DNA enzyme (Illumina), and 22.5 ml of
nuclease-free water. The transposed DNA was immediately purified using
the Qiagen MinElute PCR Purification Kit (QIAGEN) following the
manufacturer’s guide and eluted at 10 ml volume. PCR amplification of the
transposed DNA was done using a low-cycle number protocol and with
primers published by Buenrostro et al. (17). Each PCR mixture contained
of 25 ml of New England Biolabs 23 PCR Mix, 2.5 ml of 25 mM forward
primer (Primer Ad1_noMX), 2.5 of 25 mM reverse-barcoded primer,
0.3 ml of 1003 SYBR Green (Invitrogen), and 10 ml of transposed DNA.
PCR was carried out with the cycling protocol: 72˚C for 5 min and 98˚C
for 30s, followed by five cycles of 98˚C for 10 s, 63˚C for 30 s, and 72˚C
for 1 min. The reaction was held at 4˚C after the fifth cycle. A side
quantitative PCR (qPCR) was set up using the PCR product from these five
cycles of amplification. Each qPCR mixture contained 5 ml of New Eng-
land Biolabs 23 PCR Mix, 0.25 ml of 25 mM forward primer, 0.25 ml of
25 mM reverse-barcoded primer, 0.06 ml of 1003 SYBR Green, 4.44 ml of
nuclease-free water, and 5 ml of the PCR-amplified product. qPCR was
carried out using the cycling protocol: 98˚C for 30 s, followed by 25 cycles
of 98˚C for 10 s, 63˚C for 30 s, and 72˚C for 1 min and plate read. The
qPCR amplification plot was then used to calculate the additional number
of cycles needed for the PCR to achieve maximum amount of product
without going into saturation. Each sample was amplified for a total of
14–16 cycles. The amplified libraries were then purified using Qiagen
MinElute PCR Purification Kit following the manufacturer’s guide and
eluted at 20 ml volume. Libraries were sequenced on the HiSeq 2000 with
2 3 50 cycles and for an average of 50 million paired-end reads per
sample. We performed the IL-4c stimulation experiment twice and gen-
erated two independent sets of libraries to obtain an optimal number of
biological replicates for each macrophage population. The two indepen-
dent sets of libraries are referred to in this study as Run1 and Run2, re-
spectively. ATAC-seq libraries for C57BL/6 and BALB/c AAMs were
generated using the same protocol and sequenced in a single run.

Transcriptional profiling of BALB/c and C57BL/6 AAMs. One hundred
thousand cells were sorted per sample as described above. FACS-purified
cells were spun down and washed once with PBS before lysis with 350 ml of
Buffer RLT from the RNeasy Mini Kit (QIAGEN). RLT lysates were
homogenized by 1 min of vortexing and were immediately stored at 280˚
C until RNA isolation. RNA was isolated using the RNeasy Mini Kit
(QIAGEN) based on the manufacturer’s protocol, with an additional
DNase digestion step using the RNase-free DNase set (QIAGEN). Tran-
scriptional profiling was done using the cell expression by linear
amplification and sequencing 2 (CEL-seq2) protocol (18), and library
preparation was performed at NYU School of Medicine Genome Tech-
nology Center core facility. CEL-seq2 libraries were sequenced on the
HiSeq 4000 with 2 3 50 cycles. Although CEL-seq2 was originally de-
veloped as a single-cell assay, we used this protocol in this study as a bulk
transcriptional profiling assay and use the more commonly used term
RNA-seq to describe data generated from this assay.

Bioinformatics and computational methods

ATAC-seq processing. Raw ATAC-seq reads were aligned to the reference
mouse genome mm9 using bowtie2 (v2.2.9) (19), with the parameters
maxin 2000 and local while keeping all other parameters at default
settings. To keep only highly unique alignments, reads with mapping
quality (MAPQ) score ,30 were removed. We further removed all du-
plicate reads, as well as reads mapping to mitochondrial DNA and
chromosome Y. Read filtering steps were done using the suite of tools
from samtools (v1.2 and v1.3.1) (20), ngsutils (v0.5.9) (21), and picard-
tools (http://broadinstitute.github.io/picard/; v1.1.1 and v2.8.2). After all
filtering steps, reads were merged across all replicates from the same
macrophage population. This resulted in a median depth of 15,235,324
reads per macrophage population in Run 1 and 9,865,310 reads per
macrophage population in Run 2. For visualization of accessibility reads
on the Integrative Genomics Viewer, we merged reads from the same
macrophage population across samples from both runs, generated tiled data
format files using Integrative Genomics Viewer tools and finally normalized
the merged reads to reads per million (22).

Identification of accessible chromatin regions. We used the merged reads
for each macrophage population to identify accessible chromatin regions,
using the PeaKDEck (v1.1) peak calling algorithm, which measures signal
density from randomly sampled bins genome-wide before generating a
dataset-specific probability distribution to identify regions with signifi-
cant signal enrichment (23). We ran PeaKDEck using sampling bins that
consist of a 75-bp central bin (-bin) and a 10,000 bp background bin
(-back). Sampling along the genome was done in steps (-STEP) of 25 bp
and the background probability distribution was generated using 100,000
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randomly selected sites (-npBack). Significance was defined using a
p value ,0.0001, and regions with significant p values were defined as a
“peak” (i.e., an accessible chromatin region). Peak calling was done in-
dependently on libraries generated from Run 1 and Run 2.

Generation of a union set of accessible chromatin regions.We next counted
the number of reads present at each accessible region to analyze the ATAC-
seq data using quantitative approaches downstream. To do this, we first
generated a set of consensus peaks across the dataset by taking the union of
peaks called from each macrophage population. Peaks were merged if
overlapping by 1 bp or more. The number of reads at each peak within the
union peak sets were then counted for each sample. Finally, each peak was
recentered 6100 bp on its summit, defined as the position with maximum
pile up of reads. Recentering on peak summits was performed as this
should coincide with the binding event of a TF within an accessible
chromatin region. We implemented the read counting and peak summit
recentering steps directly using the dba.count function from the Bio-
conductor package DiffBind (version 1.14.2) (24). The final count matrix,
which consisted of 61,713 peaks, was used for downstream analyses.

Quantitative ATAC-seq analysis. ATAC-seq read counts were transformed
using the regularized logarithmic (rlog) transformation as implemented in
the Bioconductor package DESeq2 (25). To manage batch effect from the
two separate libraries, we first modeled the rlog accessibility read counts to
the batch variable using a linear model and subtracted out the coefficient
contributed by the batch variable—this was implemented directly using the
removeBatchEffect function in limma (26). We next chose a set of 30,856
regions with high variance, using the varFilter function in the genefilter
package with default parameters, which keeps only features with variance
interquartile range. 0.5 (27). We performed principal component analysis
(PCA) using the batch-subtracted rlog read counts of these regions with
high variance using the prcomp function in R.

To identify IL-4–dependent accessible regions, we directly compared
the ATAC-seq profiles of IL-4–stimulated macrophages to their reference
nonstimulated macrophages using a differential analyses workflow directly
implemented through DESeq2. We fit the negative binomial model in
DESeq2 using the raw accessibility reads from all 61,713 regions, with the
model ∼ Batch + Population, in which Batch is a variable describing if a
sample belonged in Run 1 or Run 2, whereas Population is a variable
describing if the sample is Mres, AAMres, Mmono, or AAMmono. IL-4 de-
pendency was defined using a significance threshold of false discovery rate
(FDR) of 10%. To visualize IL-4–dependent regions, we scaled the batch-
subtracted rlog read counts of these IL-4–dependent regions by z-score
transformation and next performed k-means clustering on these scaled,
rlog-transformed reads (K = 4). The clustered matrix was visualized as a
heatmap.

Comparison of sequence properties between constitutively accessible and
IL-4–induced regions. Identification of constitutively accessible and
IL-4–induced regions. To define a set of constitutively accessible re-
gions, we used only peaks from Mres and Mmono, respectively, that were
identified in both Run 1 and Run 2. This resulted in 8061 constitutively
accessible regions in Mres and 14,045 constitutively accessible regions in
Mmono. IL-4–induced peaks were defined using the differential analysis
outlined above. All region overlap analyses throughout this study were
performed using the intersect function from the BEDTools suite (28), and
overlaps were defined as any regions overlapping by at least 1 bp, unless
otherwise noted.

Genomic elements enrichment analysis. We downloaded genome-wide
annotations of five different genomic elements (promoter, start exon,
coding exon, end exon, and intron) from the University of California, Santa
Cruz (UCSC) Known Gene database for mm9 (29). We defined promoter
elements as the 200-bp-region upstream of a transcriptional start site. We
next assigned each of the 61,713 accessible regions in our dataset to a
unique genomic element label. When an accessible region overlapped two
different types of genomic elements, we assigned it to the element with
higher number of overlapping base pair. Finally, any chromatin regions not
assigned to one of these five genomic elements were labeled as intergenic.
To determine the enrichment levels of a particular type of genomic element
G within a given set of accessible regions A (either constitutively acces-
sible or IL-4–induced regions in AAMres or AAMmono), we used the bi-
nomial cumulative probability distribution, b(x; n,p), where x = number of
success, n = number of trials, and p = background probability of success.
We used the pbinom function in R. We defined x to be the number of
accessible regions in A that were labeled as the genomic element G that
was being tested, n to be the total number of genomic elements G detected
in our combined dataset and p to be the proportion of the accessible region
A to the total 61,713 accessible regions. This then gave the enrichment
levels of G in A, relative to all the accessible regions identified across the
different macrophage populations.

G/C content analysis. To calculate percentage G/C, we first used the
hgGcPercent function from the kentTools suite (v20170111, UCSC Ge-
nome Bioinformatics Group; https://github.com/ucscGenomeBrowser/
kent) to quantitate the number of G or C bases in each accessible re-
gion. This value was next normalized using the length of the accessible
region. CpG island track was downloaded from the UCSC Genome An-
notation Database for mm9 (http://hgdownload.soe.ucsc.edu/goldenPath/
mm9/database/). Enrichment levels of CpG island in a given set of ac-
cessible regions A was based on the binomial cumulative probability as
described above, in which x = number of accessible regions in A that
overlapped a CpG island, n = number of CpG island in the total dataset of
61,713 regions, and p = proportion of A to the total 61,713 regions.

Calculation of distance to IL-4–induced genes. IL-4–induced genes were
first identified for AAMres and AAMmono from the microarrays generated
by Gundra and Girgis et al. (12), using the linear model and empirical
Bayes statistics as implemented in limma, with genes significantly induced
by IL-4 defined using the thresholds FDR 10% and log2 fold change .1.
The distance between each accessible region and its closest IL-4–induced
gene body was calculated using the closest function in BEDTools.

TF motif analysis. Sequences of IL-4–induced regions were fetched using
the BEDTools getfasta function for TF motif analysis with the MEME
Suite tools (30). Whole genome fasta file for mm9 was downloaded from
the Illumina igenome database (https://support.illumina.com/sequencing/
sequencing_software/igenome.html). Background file was generated us-
ing the function fasta-get-markov in MEME, based on the total 61,713
accessible regions at a Markov model order of 3. TF motif databases
(which included mouse and human TF motifs) were curated as described in
Ref. 31. We performed de novo motif discovery by running MEME (as part
of MEMEChIP, which randomly sampled 600 sequences) with the fol-
lowing parameters: -mod zoops -nmotifs 3, -minw 6, and -maxw 30.
Overrepresentation analysis to identify macrophage-specific TF motifs was
performed by running HOMER (32) using sequences from the opposing
macrophages as background sequences (i.e., to identify TF motifs specific
to AAMres, sequences of IL-4–induced regions from AAMmono were used
as background sequences) and the parameters: -mask, -size 8,10,12,16,
-mset vertebrates, and nlen 3. For motifs from each macrophage lineage,
we combined all three de novo motifs discovered by MEME and motifs
with enrichment log2 p values , 215 by HOMER for clustering analysis
(we used the known motifs output from HOMER). This resulted in 14
motifs for AAMres and AAMmono, respectively. Clustering was done using
STAMP (33, 34), with the frequency matrices of motifs and the following
default parameters: column comparison metric - Pearson correlation
coefficient, alignment method - ungapped Smith–Waterman, tree-building
algorithm - UPGMA, and multiple alignment strategy - iterative refinement.

Comparisons between predicted PU.1 motif and chromatin
immunoprecipitation sequencing–defined PU.1 binding sites. PU.1 chro-
matin immunoprecipitation sequencing (ChIP-seq) regions identified in
thioglycollate-induced macrophages, generated from two different exper-
iments, were downloaded as browser extensible data (BED) files that had
been directly deposited in the Gene Expression Omnibus (GSM1131238
and GSM1183968) (5, 35). A set of 55,386 reproducible PU.1 binding sites
were defined by intersecting these two sets of PU.1 ChIP-seq regions. We
used the PU.1 motif discovered de novo from all the constitutively ac-
cessible regions in Mmono and ran Find Individual Motif Occurrences
(FIMO) (36) to identify all PU.1 motif sites from Mmono using a p value
threshold of 0.0001 and the background file generated as described above.
Because the published PU.1 ChIP-seq regions were of 200-bp length, we
extended the predicted PU.1 motifs from Mmono by 6 100 bp to match the
comparison. Overlapping rate was calculated as total number of predicted
PU.1 motifs from Mmono overlapping a reproducible PU.1 ChIP-seq region/
total number of predicted PU.1 motifs from Mmono 3 100%.

PU.1 motif analysis. We identified IL-4–induced PU.1 motif sites by
performing motif scanning with FIMO using the PU.1 motif discovered de
novo from the IL-4–induced peaks of AAMres and AAMmono, respectively.
FIMO was run with a p value threshold of 0.0001 (as part of MEMEChIP).
Motif scores were also calculated as part of FIMO.

The detected IL-4–induced PU.1 motif sites were then extended625 bp
using the BEDTools slop function. These PU.1 motif sites 625 bp are
hereafter referred to as “PU.1 regions.” To identify potential cofactors for
PU.1, these PU.1 regions were specifically subjected to motif scanning by
FIMO, with a background model that was based on the 55,386 PU.1 ChIP-
seq peaks described above and at a Markov model order of 3. To determine
which of these detected motifs were macrophage specific, the odds ratio of
a motif being detected in the PU.1 regions of AAMres versus AAMmono

were calculated. The p value was determined using two-sided Fisher test,
with the null hypothesis of a motif being equally likely to be detected in
the IL-4–induced PU.1 regions of AAMres and AAMmono (i.e., log2 odds
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ratio of 0). When multiple motifs of the same TF were present in the
database, we used the motif that was most frequently detected in PU.1
regions for odds ratio calculations. TFs from mouse and human were kept
as separate analyses, but included in the same visualization. To account
for the multiple hypotheses testing performed over 633 mouse TFs and
835 human TFs, the Benjamini–Hochberg procedure was used to perform
p value adjustment by calculating the FDR and significance threshold was
set at FDR 10%. Hence, statistically significant TFs were macrophage
specific, with log2 odds ratio .0, indicating AAMres specificity and log2
odds ratio ,0 indicating AAMmono specificity. For visualization of sig-
nificant results, TFs were summarized at the family level as defined in
Ref. 37 (Fig. 3B). The maximum absolute log2 odds ratio of the family was
visualized and the specific TF with the maximum absolute log2 odds ratio
value was stated in parenthesis. Where TF family annotation was not
available, the log2 odds ratio of the specific TF itself was used.

DNA shape features of PU.1 motifs were analyzed using the DNAshape
algorithm (24, 38, 39) for four different DNA shape configurations at
single-nucleotide resolution. Sequences on the antisense strand were re-
verse complemented prior to DNA shape prediction.

ATAC-seq processing from C57BL/6 versus
BALB/c experiment

Raw ATAC-seq reads were aligned to the mm10 mouse reference genome
(for compatibility with available BALB/c sequence variant data, see details
below). Reads with MAPQ ,30, as well as duplicate and mitochondrial
reads, were all removed before peak calling. Peak calling in PeaKDEck
was done using the same parameters in the IL-4c stimulation experiment,
except for a p value threshold of 0.00001. A consensus count matrix consisting
of 40,981 accessible regions from all samples was generated as described
above using DiffBind and used to identify strain-specific regions using the
differential analysis workflow implemented through DESeq2. We fit the
negative binomial model using ~ Strain + CellType + Strain:CellType,
where Strain is one of either C57BL/6 or BALB/c and CellType is one of
either AAMres or AAMmono, and extracted strain-specific regions from the
following comparisons: 1) BALB/c versus C57BL/6 in AAMres, and 2)
BALB/c versus C57BL/6 in AAMmono. Significance was defined at a
threshold of FDR 10%.

Characterizing BALB/c variants at PU.1 motif regions

BALB/c-specific sequence variants, including single nucleotide polymor-
phisms (SNPs) and insertion/deletion (indels), were downloaded as variant
call format (VCF) files from the Sanger Mouse Project (ftp://ftp-mouse.
sanger.ac.uk/). Variants that were not labeled “PASS” under the Filter flag
were removed using vcftools (40). These VCF files were then converted to
the BED file format using the vcf2bed function from bedops (41) for
overlap analysis with the IL-4–induced PU.1 regions. Because these BALB/c
variants were identified on the mm10 genome, we lifted over IL-4–induced
PU.1 regions defined initially on the mm9 coordinates to the mm10 co-
ordinates. PU.1 motif sites that directly overlapped sequence variants were
identified using the BEDTools intersect function. To define PU.1 motif
sites with flanking variants, we used the BEDTools closest function to
calculate distances between a PU.1 motif and its closest BALB/c variant
and identified motifs with a closest variant at an absolute distance of ,25
bp, but not overlapping a variant directly. We also limited the DNA shape
prediction to SNPs only, to avoid the shift in position due to the insertions/
deletions.

Generation of BALB/c whole genome fasta

To construct a BALB/c whole genome fasta for DNA shape prediction, we
took the list of BALB/c variants filtered from above and used the vcf2diploid
tool (42) to integrate these BALB/c variants into the mm10 reference
genome. To annotate PU.1 regions on the BALB/c coordinates, we used
the accompanying chain file generated from the vcf2diploid tool in the
above step to lift over the PU.1 regions from mm10 coordinates to BALB/c
coordinates. The mm10 and BALB/c whole genome fasta and the PU.1
regions on the corresponding C57BL/6 and BALB/c coordinates were then
used with the getfasta function in BEDTools to fetch the sequences of
specific IL-4–induced PU.1 regions with flanking SNPs for shape predic-
tion with DNAShape algorithm.

PU.1 and cofactor ChIP-seq analysis

The PU.1 and cofactor ChIP-seq analyses were performed on data fromLink
et al. (43). BED files were directly downloaded from the Gene Expression
Omnibus (GSE109965). We first identified analyzed data sets from
nonstimulated BMDMs of C57BL/6 background. TF ChIP-seq that were

analyzed included PU.1, CEBP, cJUN, RUNX, and USF. Only TF binding
sites that were accessible (as defined by ATAC-seq) and contained H3K27ac
histone modifications were included in the analysis. PU.1 binding sites that
were not cobound by other cofactors were defined as PU.1 ChIP-seq peaks
that did not overlap with ChIP-seq peaks of CEBP, cJUN, RUNX, or USF,
using the intersect function in BEDtools. This resulted in 673 PU.1 ChIP-
seq peaks.

To identify PU.1motif sites from these 673 PU.1 ChIP-seq peaks, we first
derived the PU.1 motif from nonstimulated BMDMs by performing MEME
on all the PU.1 ChIP-seq peaks (a random background at Markov order 3).
The de novo PU.1 motif was then used to run FIMO on the 673 PU.1 ChIP-
seq peaks that did not overlap with other TFs (p value threshold of 0.0001;
background was based on the union set of ATAC-seq peaks in BMDMs at
Markov order 3). Finally, we defined strain-specific PU.1 binding sites as
PU.1 motifs in peaks with at least 4-fold reduction in SPRET/Ei PU.1
ChIP-seq reads compared with C57BL/6 PU.1 ChIP-seq reads.

Identification of predictors for strain-specific and strain-common regions.
To identify features associated with the 922-strain-specific and 4776-strain-
common SNP–carrying accessible regions, we first assessed each of these
accessible regions for the following characteristics: EuclideanDistance-
ProT = amount of shape change induced by the BALB/c SNP(s) in the
ProT shape configuration. EuclideanDistanceRoll = amount of shape
change induced by the BALB/c SNP(s) in the roll shape configuration.
EuclideanDistanceMGW = amount of shape change induced by the BALB/c
SNP(s) in the MGW shape configuration. GCPercentB6 = % G/C cal-
culated using C57BL/6 sequences. CpGB6 = a binary variable (yes/no)
indicating if the region overlapped a CpG island. GenomicElements = the
type of genomic element that the region is labeled as (one of promoter,
start exon, end exon, coding exon, intron, or intergenic). SnpFrequency =
Number of SNPs carried by the region. IL4Inducibility = a binary variable
(yes/no) indicating if the region was IL-4 inducible. We then fit a logistic
regression model as follows using the glm function in R, with the pa-
rameter family = “binomial”: Class ∼ EuclideanDistanceProT + Eucli-
deanDistanceRoll + EuclideanDistanceMGW + GCPercentB6 + CpGB6 +
GenomicElements + SnpFrequency + IL4Inducibility. The dependent
variable “Class” is a label describing if the region is “strain-specific” or
“strain-common.” Significance of predictor was determined by ANOVA
for the coefficients of the predictors, using a p value cutoff of ,0.05.

Processing of CEL-seq reads. CEL-seq reads were first demultiplexed using
the bc_demultiplex script from https://github.com/yanailab/CEL-Seq-
pipeline (18). Demultiplexed reads were aligned to the mm10 mouse
reference genome using bowtie2 (version 2.2.9). Aligned reads were
counted for each gene using a modified htseq-count script (from https://
github.com/yanailab/CEL-Seq-pipeline) adapted for CEL-seq reads with
unique molecular identified. We included only reads with mapping quality
score .30 and removed singleton genes. This resulted in a final median
read depth of 737,848 reads per sample, covering a median of 11,096
genes per sample. PCA was performed using 7431 genes with high vari-
ance, defined using the varFilter function in the genefilter package with
default parameters, which keeps only features with variance interquartile
range .0.5. Differential analysis was done using DESeq2 by fitting the
negative binomial model using ∼ Strain + CellType + Strain/CellType.
Significantly differential genes were extracted using a threshold of FDR
10% for the four different comparisons of 1) AAMres versus AAMmono in
C57BL/6, 2) AAMres versus AAMmono in BALB/c, 3) BALB/c versus
C57BL/6 in AAMres, and 4) BALB/c versus C57BL/6 in AAMmono.
Overlapping genes were defined as genes identified as differential in two
different comparisons. Pathway enrichment analysis was done using strain-
specific genes in AAMres and AAMmono, respectively, through Ingenuity
Pathway Analysis with the parameter Organism = Mouse and keeping all
other parameters at default settings.

Results
IL-4 stimulation leads to remodeling of open-chromatin
landscape in peritoneal macrophages

To examine chromatin remodeling on different types of tissue mac-
rophages, we injected IL-4c into the peritoneal cavity of C57BL/6mice
to induce accumulation of AAMres and compared these with AAMmono

in mice injected with IL-4c and thioglycollate (12). We then used
ATAC-seq (17) to profile the open-chromatin landscape of these
macrophages, in comparison with nonstimulated F4/80hiCD2062

macrophages of naive mice and F4/80intCD206+ macrophages from
thioglycollate-treated mice (12).
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The overall differences in accessible chromatin landscape (a
total of 61,713 open-chromatin regions) could be attributed mainly
to the cellular origin of macrophage (27% of total variance), but
alternative activation by IL-4 also altered the accessible chromatin
profiles (Fig. 1A, 1B). Arg1 and Ucp1, which are known to be IL-4
inducible (12), had constitutively accessible chromatin regions,
whereas Retnla, another IL-4 inducible gene, had chromatin
regions that gained accessibility in response to IL-4 (Fig. 1B).
This IL-4–induced chromatin remodeling process can also be
specific to either tissue-resident or monocyte-derived macro-
phages at certain regions (e.g., regions adjacent to the loci of

Tgfb2, Ccl2) (Fig. 1B). Of the 61,713 total accessible regions, we
identified 1572 regions induced by IL-4 for AAMres and 1462
regions for AAMmono (Supplemental Fig. 1A). IL-4–dependent
regions also had the largest contribution to the differences in open-
chromatin profiles between nonstimulated and IL-4–stimulated
macrophages (Fig. 1C).
The IL-4–induced accessibility regions almost all (99% in AAMres

and 97% in AAMmono) gained accessibility from undetectable levels at
baseline (Fig. 1D). To determine how the IL-4–induced accessi-
bility regions differed from regions that were constitutively ac-
cessible, we made comparisons of several sequence characteristics

FIGURE 1. IL-4 stimulation leads to remodeling of open chromatin landscape in peritoneal macrophages. (A) PCA scores of individual ATAC-seq

samples. PCAwas performed using rlog-transformed ATAC-seq read counts of 30,856 regions with high variance (only regions with variance interquartile

range .0.5 were retained) (n = 4–6 mice per macrophage population). Data points represent independent biological replicates. (B) Genome browser views

of representative (boxed) constitutively accessible and IL-4–induced regions. (C) The contributions of individual accessible regions to principal components

1 and 2 are represented in the PCA loadings plot. Each data point is color-coded based on the direction of its IL-4 dependency. Hence, IL-4–induced regions

(red) are highly associated with IL-4–stimulated macrophages, whereas IL-4–repressed regions (yellow) are highly associated with nonstimulated

macrophages. (D) Venn diagrams indicating the number of constitutively and IL-4 induced accessible regions in (top) resident and (bottom)

monocytic macrophages. We compared (E) enrichment levels for different types of genomic elements, (F) distance from a closest IL-4–induced

gene, and (G) G/C content between constitutively accessible and IL-4–induced regions in AAMmono and AAMres, respectively. G/C content in-

formation is represented in two different ways: percentage of G/C bases in an accessible region (G, left panel) and CpG island enrichment for a

given group of accessible regions (G, right panel). Number of IL-4–induced regions = 1572 in AAMres and 1462 in AAMmono; number of con-

stitutively accessible regions = 8061 in AAMres and 14,045 in AAMmono. Enrichment p values are from binomial test, whereas two-class comparison

p values are from two-sided Mann–Whitney test.
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between constitutively accessible and IL-4–induced regions
(Supplemental Fig. 1B). IL-4–induced regions were more likely to
reside in noncoding intronic regions—in tissue-resident macro-
phages, 781 of 1572 IL-4–induced peaks were intronic, as com-
pared with 2199 of 8061 constitutively accessible regions (binomial
enrichment; p = 2.5 3 1025), whereas in monocyte-derived mac-
rophages, 761 of 1462 IL-4–induced peaks were intronic, as
compared with 5282 of 14,045 constitutively accessible regions
(binomial enrichment; p = 8.5 3 1024) (Fig. 1E). In the
monocyte-derived macrophages, IL-4–induced regions were
overall closer to IL-4–induced genes (two-sided Mann–Whitney U
test; p = 3.4 3 10225 in AAMmono) (Fig. 1F). In tissue-resident
macrophages, IL-4–induced regions contained lower G/C content
(two-sided Mann–Whitney U test; p = 8.6 3 10246 in AAMres)
(Fig. 1G, left) and were also less likely to overlap with a CpG
island (Fig. 1G, right). Hence, IL-4 stimulation can lead to re-
organization of the chromatin landscape in terminally differen-
tiated peritoneal macrophages, giving rise to newly accessible
regions that have distinct sequence properties when compared
with constitutively accessible regions. The stimulation induced
accessibility changes are more likely to be in noncoding intronic
regions of the genome.

IL-4–induced regions are associated with PU.1, KLF, and
AP-1 motifs

Even though both AAMmono and AAMres received the same
stimulation within the peritoneal tissue environment, the regions
that were remodeled by IL-4 were largely dependent on cellular
origin (Fig. 2A). Of all the 2855 IL-4–induced regions, only 179
regions (6% of total IL-4–induced regions) were shared between
both AAMmono and AAMres (Supplemental Fig. 1C). Although the
IL-4–induced regions from AAMmono and AAMres were largely
distinct, the DNA motifs discovered from these distinct
regions were grouped into similar families of TFs, which included
PU.1, KLF, and the AP-1 family of motifs (Fig. 2B). However,
AAMmono had significantly higher number of accessible regions
with the AP-1 motif (two-sided Fisher exact test; p = 9.5 3 10210),
whereas AAMres had significantly higher number of accessible re-
gions with the KLF motif (two-sided Fisher exact test; p = 9.2 3
1028), suggesting the use of different TFs by the two macrophage
types during chromatin remodeling upon IL-4–induced alternative
activation (Fig. 2C). Such differences were not observed with the
PU.1 motifs. We next examined the expression levels of these TF
families (KLF versus AP-1) to determine if specific members within
each family are differentially expressed between AAMres and
AAMmono. Twenty TFs of KLF and AP-1 families were highly
expressed in peritoneal macrophages (Supplemental Fig. 2A). These
TFs almost all demonstrated lineage-specific expression, both at
baseline (clusters 1 and 2) and with IL-4 stimulation (clusters 3 and
4) (Fig. 2D). These results suggest that although KLF and AP-1
family of TFs may have lineage-specific functions, PU-1 is likely
important for both macrophage lineages.
We next used an overrepresentation approach to identify addi-

tional motifs enriched in the IL-4–induced regions of AAMres

or AAMmono. Because there were some overlaps between the
motifs discovered by the de novo discovery method and ove-
representation method, we combined the two sets of motifs for a
clustering analysis and merged motifs that were redundant. Using
this approach, we identified macrophage-specific motifs beyond
those from de novo motif discovery (Fig. 2E). The GATA motifs
and basic helix-loop-helix (bHLH) motifs were specific to IL-4–
induced regions of AAMres. TFs with these binding motifs have
been implicated to be important in proliferation of tissue-resident
macrophages (44, 45). In contrast, the NFY and STAT motifs were

specific to IL-4–induced regions of AAMmono. These macrophage-
specific motifs were only detected in 15–21% of IL-4–induced
regions (236 of 1572 IL-4–induced peaks in AAMres and 317 of
1462 IL-4–induced peaks in AAMmono), whereas the PU.1, KLF,
and AP-1 motifs discovered by the de novo method were present
in ∼75% of IL-4–induced peaks in AAMres and AAMmono.
Therefore, although there are specific TF motifs enriched in IL-4–
induced regions of AAMres (GATA and bHLH) and AAMmono

(NFY and STAT), the majority of IL-4–induced regions are
enriched for a common set of TF motifs. Hence, differential ac-
cessibility of putative TF binding sites alone could not explain the
lineage-specific chromatin remodeling patterns for macrophages
of different cellular origins. We hypothesized that other sequence
features around the PU.1 motifs could be important.

PU.1 motifs in AAMres and AAMmono are associated with
macrophage-specific sequence features

PU.1 motif was the most frequently found motif from the IL-4–
induced regions across both AAMres (639 of 1572 IL-4–induced
regions) and AAMmono (552 of 1462 IL-4–induced regions)
(Fig. 2C). We focused on these predicted PU.1 binding sites and
further characterized their local sequence features in both types of
macrophages. In the absence of ChIP-seq data from our own ex-
periments, we first quantified the accuracy of PU.1 motif prediction
with actual PU.1 binding, by comparing our predicted PU.1 motifs
from Mmono with PU.1 ChIP-seq data in the same cell type (5, 35).
A total of 78% of the PU.1 motif sites predicted from Mmono in our
study (4282 of total 5492 predicted PU.1 motif sites) overlapped
with a PU.1 binding site defined by ChIP-seq (Supplemental Fig.
2B). This provided some confidence that most of the PU.1 motifs
we were investigating are likely to be directly bound by PU.1.
We next characterized the PU.1motifs discovered from the IL-4–

induced regions of AAMres and AAMmono. Motif score is
commonly used as a proxy of TF-DNA binding affinity. When
compared with PU.1 motifs from AAMres, PU.1 motifs from
AAMmono had significantly lower motif scores and also demon-
strated greater variability in their values (Fig. 3A). To identify
potential cofactors that could bind in collaboration with PU.1 and
contribute to macrophage-specific PU.1 accessibility, we per-
formed motif scanning using sequences from PU.1 motifs6 25 bp
flanking sequences (Supplemental Fig. 2C). We identified TF
motifs that were specific for AAMres versus AAMmono in these
PU.1 regions (Fig. 3B). These predicted macrophage-specific co-
factors are largely from different families. We observed a greater
diversity in TF families enriched around the IL-4–induced PU.1
motifs of AAMmono. These results indicate that PU.1 could function
cooperatively with different cofactors to bind different genomic re-
gions depending on the macrophage lineage. However, because the
majority of TF families were enriched at similar levels in both
AAMres and AAMmono, differential accessibility of putative TF
binding sites alone could not explain the macrophage lineage-specific
chromatin remodeling patterns. We hypothesized that other sequence
features around PU.1 motifs could be important.
Because functional PU.1 binding can be most accurately de-

termined by TF motifs neighboring the PU.1 motif and by the local
three-dimensional shape of the DNA at PU.1 binding sites and
DNA shape can be a predictor of TF binding pattern (46, 47), we
next determined if such shape properties could be associated with
differences in IL-4–induced PU.1 regions between AAMres and
AAMmono. We computationally predicted four DNA shape con-
figurations (minor groove width, propeller twist, and helical twist and
roll) at the IL-4–induced PU.1 regions of AAMres and AAMmono and
found that IL-4–induced PU.1 regions of AAMres and AAMmono

differed significantly in shape profiles (Fig. 3C). The PU.1 motifs of
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AAMres have a more conserved DNA configuration, whereas PU.1
motifs of AAMmono demonstrated greater variability in DNA con-
figuration. These differences were most pronounced in the propeller
and helical twist configurations of the eighth base pair in the PU.1
motif (Fig. 3D). These macrophage-specific DNA shape profiles were
specific to the PU.1 motif regions, as IL-4–induced KLF motif re-
gions did not display AAMres and AAMmono specific DNA shape
profiles (Supplemental Fig. 2D). These results point toward the
contribution of local DNA shape on the macrophage lineage-specific
pattern of PU.1 motif accessibility and binding. Although the PU.1
motif is the most enriched motif in the IL-4–induced regions for both
AAMres and AAMmono, sequence characteristics in the PU.1 motifs
differ between the two types of peritoneal macrophages, suggesting

local DNA shape features of PU.1 binding sites might cooperate with
distinct coregulators in these different lineages to contribute toward
lineage-specific AAMs in response to IL-4 stimulation.

Accessibility of IL-4–induced PU.1 regions can be altered
through DNA shape change induced by sequence mutation,
without disruption of the PU.1 motif

To determine whether altering the local DNA shape would change
accessibility of the PU.1 motifs, we designed a mutation study
using natural variants between the C57BL/6 and BALB/c mouse
strains, by performing ATAC-seq on AAMmono and AAMres

generated from mice of these two different genetics back-
grounds. We first defined strain-specific (significant differences

FIGURE 2. IL-4–induced regions are associated with PU.1, KLF, and AP-1 motifs. (A) Heatmap visualizing the macrophage-specific IL-4–dependent regions.

Each row represents one of the 2855 IL-4–dependent regions and each column a unique sample. Values are rlog-transformed, batch-subtracted read counts, scaled

using a z-score transformation for each region. (B) Motifs discovered de novo from IL-4–induced regions in AAMres and AAMmono. (C) Frequency of IL-4–induced

peaks delineated by the presence of de novo PU.1, KLF, and AP-1 motifs. (D) Twenty highly expressed TF genes related to the de novo motifs discovered from the

IL-4–induced regions. Values are log2 intensity values of microarrays (12). (E) Clustering analysis of de novo motifs and macrophage-specific motifs identified using

an overrepresentation approach from the IL-4–induced regions of AAMres (left) and AAMmono (right). Asterisks indicate macrophage-specific motifs uniquely

identified via the overrepresentation approach. Only macrophage-specific motifs with log2 p value , 215 are included in this visualization.
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FIGURE 3. PU.1 motifs in AAMres and AAMmono are associated with macrophage-specific sequence features. (A) Comparison of PU.1 motif scores

derived by FIMO in IL-4–induced regions of AAMres versus AAMmono, with horizontal lines in the violin plots representing values at 25th, 50th, and 75th

percentiles. The p value is from a two-sided Mann–Whitney U test. Number of IL-4–induced regions = 1572 in AAMres and 1462 in AAMmono. (B)

Macrophage-specific TF motifs found within IL-4–induced PU.1 motifs 625 bp regions, represented using log2 odds ratio values (two-sided Fisher test,

adjusted p values , 0.1). Motifs are summarized as TF families and the specific TF with the maximum absolute log2 odds ratio value is stated in pa-

renthesis. When TF family annotation was not available, the log2 odds ratio of the specific TF itself is used. (C) Average of DNA shape features at IL-4–

induced PU.1 regions of AAMmono and AAMres. Scatter plots are centered on IL-4–induced PU.1 motifs (x-axes), with the solid (Figure legend continues)
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in accessibility counts between C57BL/6 and BALB/c at FDR
10%) or strain-common (no significant differences in accessibility
count between C57BL/6 and BALB/c) IL-4–induced PU.1 regions
from both AAMmono and AAMres. We next focused only on strain-
specific IL-4–induced PU.1 regions with SNP(s) flanking the PU.1
motif within 625 bp (Supplemental Fig. 3A). This allowed us to
ask if the differences in chromatin accessibility between strains
were only due to the flanking sequence mutation(s) and
not confounded by disruption of a potential PU.1 binding site.
We then correlated these strain-specific differences in accessibility
with phenotypic differences in gene expression.
We highlight this DNA shape dependent regulatory mechanism

at two independent genomic regions that we infer to be regulating
biologically relevant functions. Our first example is an intergenic
accessible region in AAMres, in which two different SNPs oc-
curring at the 19th and 24th base pair upstream of a PU.1 motif
led to changes in DNA shape, most drastically with the ProT and
HelT configurations (Fig. 4A). This was accompanied by decrease
in chromatin accessibility counts (log2 fold change BALB/c versus
C57BL/6 =22.57; adjusted p value = 0.01) and reduced expression
of the nearby Slc30a4 gene in the BALB/c mice (log2 fold change
BALB/c versus C57BL/6 = 23.43; adjusted p value = 0.006).
Slc30a4 is a zinc exporter that affects the survival of Histoplasma
capsulatum in IL-4–stimulated macrophages (48). Our second ex-
ample is an intronic region on the P4hb gene in AAMmono, in which
SNPs occurring at the 8th and 24th base pair upstream of a PU.1
motif led to changes in DNA shape, with the former causing larger
shifts in the MGW and roll configurations (Fig. 4B). This was,
however, accompanied by increased accessibility instead (log2 fold
change BALB/c versus C57B6L/6 = 1.87, adjusted p value =
0.0085) and increased expression of the P4hb gene (log2 fold
change BALB/c versus C57BL/6 = 0.34, adjusted p value = 0.048).
Although the PU.1 motifs were intact in the regions with dis-

rupted accessibility described above, the flanking SNPs could have
disrupted the motif of a cofactor to cause the alterations in PU.1
accessibility. Because our experiments are performed on peritoneal
macrophages of different cellular lineages isolated ex vivo from
mice treated with IL-4 in vivo, it is difficult to obtain sufficient cell
numbers from mice directly for multiple TF ChIP-seq experiments.
Fortunately, a recent study systematically compared TF binding
and function with macrophages from five different strains of mice
to assess the impact of genetic variation on TFs activity in mac-
rophages (43). Hence, we could analyze multiple published TF
ChIP-seq (including PU.1, CEBP, cJUN, RUNX, and USF) and
ATAC-seq datasets generated from nonstimulated BMDMs of
C57BL/6 and SPRET/Ei genetic backgrounds. From the non-
stimulated BMDMs of C57BL/6 genetic background, we first
identified a set of 673 accessible PU.1 motif sites that were bound
by PU.1 alone, but not by any of the other cofactors tested in the
study. We compared the binding of these 673 PU.1 motif sites
between nonstimulated BMDMs of C57BL/6 and SPRET/Ei ge-
netic backgrounds to identify 67 motif sites that contained SNPs
and had reduced PU.1 binding. Of these 67 SNP-containing PU.1
binding sites with strain-specific binding pattern, ∼40% (26 of 67)
had SNPs that flanked the intact PU.1 motif. An example of such a
PU.1 binding event occurred at the first exon of the gene RGMb
(Fig. 4C), which has been described as a binding partner of PD-L2

(49). Although RGMb was expressed in BMDMs of C57BL/6, it
was not detected in BMDMs of SPRET/Ei background (Fig. 4C).
Hence, we can identify SNPs in flanking regions to an intact PU.1
motif, which can disrupt PU.1 binding in macrophages of different
genetic backgrounds.
Overall, we found that PU.1 motif-flanking variants occurred

at higher frequency then variants located directly within the mo-
tif (24.3% versus 5.4% in AAMres and 20.7% versus 6.9% in
AAMmono) (Fig. 5A). This suggests that DNA shape readout
(a proxy for local environment), instead of direct base readout
during PU.1 binding, is likely to be a more important sequence
property that could influence PU.1 binding. The frequency of local
variants was also greater in strain-specific genomic elements when
compared with strain-common regions (two-sided Fisher exact
test; p = 4.59 3 10–4 in AAMres; p = 8.12 3 10–6 in AAMmono),
even though strain-common PU.1 motifs could also have sequence
variants present within 625 bp of the PU.1 motif (Fig. 5B). When
we extended this analysis to all accessible regions in IL-4 stim-
ulated macrophages, regardless of the presence of PU.1 motif or
IL-4 inducibility, we see that 17.5% of all strain-common regions
carry local variants. This suggests that the presence of sequence
variants do not always have an impact on chromatin accessibility
and additional factors must influence whether accessibility at
specific chromatin regions are more likely to be altered by se-
quence variants.
Given the potential role of DNA shape in regulating chromatin

accessibility, we first asked if the amount of DNA shape change
caused by a sequence variant was associated with its impact on
chromatin accessibility. We identified all accessible regions car-
rying SNP(s), regardless of the presence of a PU.1 motif or IL-4
inducibility and categorized them into either strain-specific or
strain-common, as defined above (Supplemental Fig. 3B). The
strain-specific regions had a significantly greater change in DNA
shape secondary to sequence variants and this was most signif-
icant in the MGW, ProT, and roll DNA shape configurations
(Fig. 5C). We next used a logistic regression model to system-
atically examine the contribution of various DNA sequence
features in altering chromatin accessibility (detailed in Materials
and Methods). We found IL-4 inducibility, SNP frequency, and
presence of a nearby CpG island to be significant predictors of
strain-specific accessible regions (Fig. 5D). Accessible regions that
were IL-4 inducible and regions that contained higher frequency of
SNPs were more likely to be strain specific, whereas accessible
regions overlapping a CpG island were more likely to be strain
common. Consistent with this finding, strain-specific regions (re-
gardless of the presence of variants) were significantly more
enriched with IL-4–induced peaks overall, and this was observed in
both AAMmono and AAMres (Fig. 5E). This suggests that differ-
ences in the accessible chromatin landscape of activated macro-
phages on different genetics background were more likely to be
driven by stimulation-dependent genomic elements, further sup-
porting the functionality of IL-4–induced genomic elements during
alternative activation. We also asked if the higher frequency of
SNPs in a local chromatin region could have contributed to alter-
ation of chromatin accessibility by inducing a greater change in
DNA shape. Indeed, SNP frequency positively correlated with the
amount of SNP-induced DNA shape change, especially for the

lines representing Loess fit of predicted shape values at single-nucleotide resolution (dots). Boxplots are average predicted shape values over the PU.1 motif

625 bp windows, and p values are from two-sided Kolmogorov–Smirnov test. (D) Predicted DNA shape at the eighth base pair of PU.1 motif of AAMres

and AAMmono. Frequency distributions are represented by smoothed kernel density estimates. HelT, helical twist; MGW, minor groove width; ProT,

propeller twist.
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shape features MGW and ProT (Fig. 5F). Overall, these results
provide support for our hypothesis that SNPs between C57BL/6 and
BALB/c that cause alterations in predicted local DNA shape fea-
tures contribute toward changes in chromatin accessibility in re-
sponse to IL-4 stimulation.

AAMs from C57BL/6 and BALB/c mice are functionally distinct

We next compared the global transcriptional profiles of AAMres and
AAMmono from C57BL/6 and BALB/c mice to identify functional
differences in these AAMs of different genetic backgrounds. Even
though most of the differences in transcriptional profiles were
driven by the cellular origin of macrophages (45% of total vari-
ance), strain differences also contributed to the considerable var-
iation in transcriptional profiles (18% of total variance) (Fig. 6A).

Consistent with this finding, most of the macrophage-specific
functions were conserved across mouse strains and not affected
by genetic differences (Fig. 6B, left panel). In contrast, functional
differences secondary to genetics were largely specific to the
different types of macrophages (Fig. 6B, right panel).
We next examined the strain-specific functional differences in

AAMres and AAMmono, respectively (Fig. 6C). BALB/c AAMres

expressed lower levels of cell cycle–related genes, in line with
the previously reported observation that peritoneal AAMres have
lower proliferation capacity during Litomosoides sigmodontis in-
fection in BALB/c mice (10). Furthermore, the expressions of PD-
L2 (Pdcd1lg2) (Fig. 6D) and MHCII molecules (Fig. 6E), which
are cellular markers typically used to characterize alternative ac-
tivation (12) in AAMmono of C57BL/6 background, were

FIGURE 4. Accessibility of IL-4–induced PU.1 regions can be altered through DNA shape change induced by sequence mutation without disruption of

the PU.1 motif. Genomic regions containing PU.1 motif with flanking SNPs, selected from (A) AAMres, (B) AAMmono, and (C) nonstimulated BMDMs

from Ref. 43. In all examples, sequences represent a unique PU.1 motif region, in which the PU.1 motif is underlined and shaded in gray, whereas SNPs are

highlighted with red font. Line graphs of predicted shape values are centered on the PU.1 motif (sequences between the vertical lines). Genome browser

tracks illustrate the strain-specific accessibility of the region containing the matching sequence (shaded in gray). ATAC-seq reads are visualized in (A)

and (B), whereas ChIP-seq reads are visualized in (C). Boxplots in (A) and (B) represent size factor–normalized read counts, with p values are from DESeq2

(n = 4–8 mice per group) and adjusted by Benjamini–Hochberg procedure. RGMb expression in (C) is expressed as transcript per kilobase million, with

values directly obtained from Ref. 43.
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significantly reduced in BALB/c AAMmono. Notably, although
three of the five MHCII genes (H2-Aa, H2-Ab1, and H2-Eb1) had
significantly higher expression in C57BL/6 AAMmono, H2-Ea-ps
expression was specific to BALB/c AAMmono. Hence, our studies,
together with published findings (10), indicate that macrophages
from BALB/c and C57BL/6 mice are functionally distinct in how
they respond to IL-4 activation. The SNPs between C57BL/6 and
BALB/c mice that contribute toward changes in chromatin ac-
cessibility in regulatory regions may also contribute toward these
functional differences in macrophage phenotypes. However, fur-
ther work is needed to demonstrate a link between alterations in
predicted local DNA shape features around the PU.1 motifs and
the different functionality of macrophages between the C57BL/6
and BALB/c mice.

Discussion
In this study, we define and characterize IL-4–induced chromatin
accessibility with in vivo alternative activation of tissue-resident
and monocyte-derived peritoneal macrophages. Although the

pioneer factor PU.1 motif is similarly associated with IL-4–in-
duced regions in both macrophage lineages, the local DNA shape
features flanking these PU.1 motifs depend on the cellular origin
of the macrophages. By leveraging natural genetic variation be-
tween mouse strains, we demonstrate that the accessibility of
putative PU.1 binding sites correlates with the presence of SNPs
flanking the PU.1 binding site, local DNA shape predictions, and
altered expression of proximal genes. For alternative activation by
IL-4, systematic investigations into the molecular basis of differ-
ential activation in different strains of mice are lacking. Although
our initial goal was to explore how different lineages of macro-
phages (tissue resident versus inflammatory monocyte derived)
remodel their chromatin in response to the same IL-4 stimuli, our
results led us to examine how specific DNA shape features may
contribute toward chromatin remodeling around binding motifs
for the pioneer factor PU.1. In turn, this led us to test our model
using natural genetic variations between BALB/c and C57BL/6
mice. An exciting possibility from our studies is that DNA se-
quence shape features could be an important contributor toward

FIGURE 5. Effects of SNP variants on chromatin accessibility can be predicted by the extent of DNA shape change and association with IL-4 in-

ducibility. (A) Frequency of different types of sequence variants in strain-specific IL-4–induced PU.1 regions and (B) all IL-4–induced PU.1 regions

(bottom). Number of strain-specific IL-4–induced PU.1 regions = 58 in AAMmono and 37 in AAMres; number of strain-common IL-4–induced PU.1 regions

= 754 in AAMmono and 828 in AAMres. (C) Comparison of the amount of SNP-induced DNA shape change in 922 SNP(s)-containing strain-specific and

4776 SNP(s)-containing strain-common accessible regions, respectively. The shift in DNA shape for each sequence is quantitated using Euclidean distance,

in which a larger Euclidean distance value indicates a larger shift in shape. The p values are from Mann–Whitney tests. (D) Coefficient values representing

the relative contribution of each significant predictor in distinguishing between strain-specific and strain-common accessible regions. (E) Enrichment values

of IL-4–induced and constitutively accessible regions in strain-specific regions for AAMmono and AAMres. Enrichment p value is based on binomial test. (F)

Scatter plots illustrating the positive correlations between SNP frequency and amount of DNA shape change undergone by a specific region. Red, strain-

specific regions; blue, strain-common regions. Euclidean distances in this study are scaled across each DNA shape feature for visualization purpose. HelT

not shown as not correlated. Correlation coefficient and p values are based on the Spearman test using unscaled Euclidean distances.
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explaining the variation in TF binding, gene expression, and
chromatin state during macrophage activation in the context of IL-
4 activation.
From our findings, we propose that PU.1 is one of the key

regulators of IL-4–induced chromatin accessibility and PU.1
binding can be mediated through DNA shape readout of the
flanking sequences. DNA shape features, particularly the DNA
minor groove width and roll configuration, have been used to
distinguish between functional PU.1 binding sites and randomly
occurring PU.1 motif (50). However, because DNA shape is a

consequence of DNA sequence, both modes of DNA recognition
are confounded and difficult to dissociate from one another. For
example, it is unclear if the differences of DNA shape in the PU.1
regions of AAMres and AAMmono are simply due to differences in
cofactor binding, or if the PU.1 protein in these different lineages
of macrophages have different posttranslational modifications and
recognize binding sites with different DNA shape. Therefore, it is
important for future studies to identify which amino acid resi-
due(s) in the PU.1 protein could be involved with DNA shape
readout, as mutating these residues could potentially be a strategy

FIGURE 6. AAMs from C57BL/6 and BALB/c are functionally distinct. (A) PCA of 7431 genes with high variance (only genes with variance inter-

quartile range .0.5 were retained). Data points represent independent biological replicates. (B) Venn diagrams indicating the number of genes that were

commonly and uniquely identified as significantly differential (FDR , 0.1) in different comparisons—(left) macrophage-specific genes in C57BL/6 and

BALB/c AAMs and (right) strain-specific genes in AAMres and AAMmono. (C) Enrichment values from Ingenuity Pathway Analysis visualized as—log10
p value for the four different groups of genes—1) BALB/c specific in AAMres, 2) C57BL/6 specific in AAMres, 3) BALB/c specific in AAMmono, and 4)

C57BL/6 in AAMmono. Only the top 10 pathways (as defined by enrichment p values) are included in this visualization. Specific pathways are highlighted

for clarity. (D) Representative flow cytometric analysis of F4/80 and PD-L2 surface expressions in AAMmono of C57BL/6 and BALB/c mice. Boxplots show

frequency of CD11b+ F4/80+ PD-L2+ singlet, live cells. The p value is based on a two-sided unpaired t test. (E) Expression of the Pdcd1lg2 gene in

AAMmono of C57BL/6 versus BALB/c mice, represented by size-factor normalized read counts. The p value is from DESeq2 and adjusted by Benjamini–

Hochberg procedure. (F) Representative flow cytometric analysis of F4/80 and MHCII surface expressions in AAMmono of C57BL/6 and BALB/c mice.

Boxplots show frequency of CD11b+ F4/80 + MHCII+ singlet, live cells. The p value is based on a two-sided unpaired t test. (G) Expression values of all

MHCII genes in AAMmono of C57BL/6 versus BALB/c mice, represented by size-factor normalized read counts. The p values are from DESeq2 and

adjusted by Benjamini–Hochberg procedure. Hinges of all boxplots correspond to values of the 25th, 50th, and 75th percentiles, whereas boxplot whiskers

extend to no more than 1.5 3 interquartile range, beyond which the outlier data points will be plotted individually. Transcriptional profiling analysis: n = 8

AAMres (C57BL/6), 4 AAMres (BALB/c), 7 AAMmono (C57BL/6), and 6 AAMmono (BALB/c). Flow cytometric analysis: n = 6 AAMmono (C57BL/6) and

6 AAMmono (BALB/c).
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to identify PU.1 binding sites that are solely dependent on DNA
shape readout, without being confounded by DNA sequences and
binding of transcriptional cofactors (51).
Many critical questions remain unanswered. Do these de novo

accessible regions persist after resolution of the external stimu-
lation to cause differences in activation kinetics with a repeated
stimulation, or would they lose accessibility to allow for plastic-
ity in macrophage activation? What is the specific relationship
between the differences in chromatin remodeling between the
C57BL/6 and BALB/C macrophages and their distinct functional
differences at baseline or after secondary repeated stimulation? In
addition, what are the intermediate molecular events that could
explain cell type–specific local DNA shape at PU.1 regions?
Possible mechanisms include differences in specific TFs cooper-
atively binding with PU.1, different protein–protein interactions
occurring at different functional domains of the PU.1 protein in a
macrophage-specific manner, or variants of the PU.1 protein
secondary to different posttranslational modifications of PU.1. Our
statistical power for examining the contribution of variants to cell
type–specific local DNA shape at PU.1 regions would also have
been greatly enhanced with the inclusion of PWK or SPRET mice.
The peritoneal IL-4c injection model that we use in this study

was chosen as a system to work with primary macrophages isolated
from a well-defined tissue environment, whereby the cellular or-
igins of the macrophages have been carefully characterized by
multiple laboratories. Although these peritoneal macrophages
may not be as physiologically relevant as those generated during
a natural parasitic helminth infection (e.g., Heligomosomoides
polygyrus or Litomosomoides sigmodontis), we consider this a
stepping-stone between in vitro BMDMs and a physiological
immune response during infection or inflammation. Future ex-
periments will determine if we can also use natural genetic vari-
ation between different strains of mice to carefully dissect the
chromatin remodeling and transcriptional regulation of helminth
induced macrophages during infection. Furthermore, our studies
in this work were limited by ATAC-seq analysis alone and ChIP-
seq data on histone modifications, as well as TFs such as PU.1
and STAT6 would provide additional evidence as to whether
there is a strong link between alterations in predicted local DNA
shape features, TF binding in enhancer or other regulatory ele-
ments and the functionality of macrophages between the C57BL/
6 and BALB/c mice.
Because trait-associated variants in the human population are

concentrated in noncoding regulatory DNA and disruption of these
regulatory elements could be a mechanism of how variants lead to
specific phenotypes, it is possible that DNA shape change could be
a means to predict which regulatory element are more likely to be
disrupted by sequence variants, leading to phenotypic predictions
in human health and disease. Hence, future work to understand how
DNA shape features could mechanistically control the complex
relationship between chromatin structure and gene expression
during macrophage activation may provide new insights into how
noncoding genetic variation influences cellular phenotypes during
inflammatory conditions in human diseases.
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